Platinum Recycling Technology Development

Dr. Stephen Grot Ion Power, Inc May 2004

"This presentation does not contain any proprietary or confidential information."

Project Overview/Objectives

- To assist the DOE in demonstrating a cost effective and environmentally friendly recovery and re-use technology for PGM containing materials used in fuel cell systems.
- The initial objectives:
 - Development of lab scale processes for the solubilizing catalyst coated membranes
 - Development of Lab scale processes for the separation of catalyst and ionomer materials
 - Develop test methods to determine vitality of the recovered materials
 - Partner with the key stakeholders in this technology area

Budget

Total Project Costs: \$3.31 Million

■ DOE Share: \$2.65 Million

Cost Share: \$0.66 M

Technical Barriers and Targets

- DOE Technical Barriers for Fuel Cell Components
 - O. Stack Material and Manufacturing Cost:
 - PGM costs could become unstable if fuel cell systems are introduced without the a recovery industry's ability to meet demands
 - Material costs of lonomer and PGMs can be driven down during near-term commercialization, could be up to 10x reduction for ionomer
 - P. Durability
 - New separation processes developed here will help identify failure modes of PEM fuel cell materials
- DOE Technical Target for Fuel Cell Stack System for 2010
 - Cost \$35/kW
 - Durability 5000 hours

Approach

- Development of a technology that can remanufacture spent fuel cell components into fresh fuel cell components.
 - Use pilot scale equipment that can operate on 1 sq meter (5 kW) of CCMs at one time
 - Separate ionomer and catalyst to levels needed for re-manufacture
 - Use analytical techniques to determine the differences between used and virgin materials
 - Will learn failure modes of CCM component
 - Determine the limits of separation technologies

Project Safety

- Pressure relief and over temperature alarms on all pressure vessel equipment
- Implementation of OSHA approved
 Chemical Hygiene Program
- Regular OSHA inspections of facilities
- H₂ Sensor with e-stop on all H₂ supplied equipment

Project Timeline

Milestone Schedule

Task 1:Demonstration MEA dissolution process

Identification of all significant contaminates in EOL MEAs

Task 2: Identification of a catalyst/NAFION® separation process

Identification of EOL NAFION® vitality

Task 3: Identification of EOL Catalyst vitality

Task 4: Demonstration of world's first Re-Manufactured MEA

Task 5: Demonstration of Rev. MOCVD catalyst stripping

Task 6: Industrial Scale Cost Estimation of Process

Task 7: Reporting Requirements

TASK 1 MEA Dissolution

- -Operated on Fresh CCM, Both Ion Power and DUPONT made
- -Solids Decontamination issues, remaining solids such as Kapton frame material easily separated out after run
- -Many more decontamination issues will arise once we use actual aged MEAs
- -Wait to use Aged MEAs until analytic techniques perfected (Task 3)

1 Liter Autoclave can process
1 sq meter of MEA at a time

TASK 2 Separation

- -Centrifuge with double Rinse step still leaves some NAFION® in the catalyst powder
 - -Target for Re-manufacture is ~ 50wt% NAFION®
 - -Target for Recycle is ppm
- -Via colormetric methods we estimate Pt/C is removed to 150 ppm from the NAFION®
 - -Target for Remanufacture may be adequate; this sample to be film cast and tested

Sorvall SUPERSPEED 20krpm Centrifuge, 8 x 30 ml

TASK 3 Catalyst Vitality

1/2 cell catalyst activity test on virgin versus recovered catalyst.

This ½ cell test may have some sample preparation effects that limit the activity of the recycle catalyst; still under investigation

Do NAFION™ particles settle upon Centrifugation?

This would limit effectiveness of Centrifugation as a separation process since NAFION® would settle with Pt

H-Type NAFION® solution, Centrifugation Experiment

➤ Conclusion → Ion Power NAFION® solutions do not separate upon Centrifugation

TASK 4 Remanufacture/Test

-5 kW Commercial fuel cell Systems Identified to be Purchased and run to failure at local Hydrogen Distribution facility with Program MEAs

- -Stainless Stack
- -Graphite Stack
- -5kW is right size for Process Equipment identified in TASK 2
- -Small scale tests identify baseline

Simple test set-up for Fast
Aging under Dry Gas
Operation, BOL
Reproducibility single cell

Interactions & Collaborations

- DuPont:
 - Dennis Kounz; Supply of MEA's new & used materials evaluations

- Delaware State University
 - Prof. Goudy; Materials Characterization Catalyst & NAFION® vitality

Future Work

- Remainder of FY 2004:
 - Demonstration of vitality of separated materials
 - establish baseline characterization tools to determine vitality of separated materials
 - Demonstrate the degree of separation that can be achieved
 - Develop ability to controllably aged CCMs
 - Identify partners that can provide equipment to controllably age multi kW quantities of CCMs at once.
- FY 2005-2008:
 - Remanufacture and Test
 - Demonstrate a full stack running on remanufactured CCMs
 - Fuel Processor catalysts
 - Look at state of the art challenges, and identify resolutions to the challenges
 - Economic analysis
 - Based on best known pilot scale method estimate scale required to become competitive and profitable over existing methods of PGM recycling.